Sabtu, 04 Juni 2011

ENZIM




2.1 Pengertian Enzim
Dengan pastinya hakikat kimia enzim sebagai protein, enzim didefinisikan oleh Dixon dan Webb sebagai suatu protein yang bersifat katalis. Definisi ini, disebabkan oleh kemampuannya untuk mengaktifkan senyawa lain secara spesifik.
Beberapa kata kunci dari definisi enzim ialah (menurut abjad) aktif, katalis, protein dan spesifik. Di sekitar empat kata kunci inilah biasanya paradigma enzim berkembang dan berbagai penyelidikan tentang enzim dilakukan. Oleh karena itu, keempat kata kunci ini perlu diperjelas lagi, walaupun secara singkat saja.
Pertama yang tercakup dalam definisi enzim ialah senyawa yang bersifat protein. Dengan demikian, senyawa yang bukan protein namun mempunyai kemampuan katalis tidak termasuk ke dalam lingkup pembicaraan enzim.
Enzim adalah katalis untuk reaksi-reaksi dalam sistem biologi (biokatalisator), yaitu substansi yang dapat mempercepat atau membantu suatu reaksi kimia tanpa harus ikut terlibat di dalam reaksi itu sendiri. Enzim ditemukan dalam setiap sel hidup, mulai dari organisme bersel tunggal sederhana sampai organisme multiseluler yang kompleks, termasuk manusia.
Enzim tersusun atas protein (Apoenzim), tersedia di alam dan mengontrol pembentukan dan dekomposisi bahan-bahan penting yang ada di sayuran, buah-buahan dan hewan. Reaksi biokimia yang paling sering saat mengaplikasian enzim secara industri adalah peruraian hidrolitik komponen bahan pangan yang memiliki berat molekul (BM) tinggi seperti pati, protein, selulosa, dan sebagainya.
Gugus Prostetik (Kofaktor), yaitu bagian enzim yang tidak tersusun dari protein, tetapi dari ion-ion logam atau molekul-molekul organik yang disebut Koenzim. Molekul gugus prostetik lebih kecil dan tahan panas (termostabil), ion-ion logam yang menjadi kofaktor berperan sebagai stabilisator agarenzim tetap aktif.



2.2 SIFAT DAN FUNGSI ENZIM KATALISATOR
a. SIFAT
Sebagai katalis, enzim mirip dengan katalis lain, yang umumnya senyawa yang jauh lebih kecil, seringkali berupa senyawa anorganik dan bahkan berupa logam. Sifat inilah yang memungkinkan aneka reaksi dapat berlangsung di dalam sel. Dalam mengkatalisis suatu reaksi, diasumsikan enzim berikatan lebih dulu dengan substrat. Akibat ikatan ini, terbentuklah suatu senyawa baru, yang dinamai kompleks enzim-substrat saja, yang dapat disingkat sebagai kompleks ES atau ES saja. Reaksi antara enzim dengan substrat, yang membentuk kompleks substrat tersebut, dapat ditulis secara sederhana sebagai berikut.
E + S ES
b. FUNGSI
• Enzim berperan dalam transduksi signal dan regulasi sel
• Enzim juga berperan dalam menghasilkan pergerakan tubuh
• Enzim juga terlibat dalam fungs-fungsi yang khas, seperti lusiferase yang menghasilkan cahaya pada kunang-kunang
• Enzim juga berfungsi memecah molekul yang besar (seperti pati dan protein) menjadi molekul yang kecil, sehingga dapat diserap oleh usus.
• Enzim menentukan langkah-langkah apa saja yang terjadi dalam lintasan metabolisme.


c. Jenis-jenis Enzim
1) Koenzim : komponen bukan protein yang membantu aktivitas enzim dalam bentuk senyawa organik
2) Kofaktor : komponen bukan protein yang membantu aktivitas enzim dalam bentuk senyawa anorganik
3) Apoenzim : bagian dari enzim yang berupa protein
4) Holoenzim : seluruh bagian enzim yang strukturnya sempurna dan aktif mengkatalisis bersama koenzim/kofaktor.
5) Gugus prostetik : kofaktor/koenzim yang terikat kuat pada enzim

2.3 MEKANISME KERJA ENZIM
Enzim dapat bekerja dengan beberapa mekanisme, yaitu :
 Enzim berikatan dengan substrat dan mengarahkannya tepat untuk bereaksi.
 Enzim mengkatalisis suatu reaksi kimia dengan berikatan dengan substrat membentuk kompleks enzim substrat
 Reaksi berlangsung di suatu daerah dinamis yang berukuran relatif kecil, yaitu tempat aktif enzim atau tempat katalitik. Tempat di luar tempat aktif disebut allosteris site.
 Tempat aktif ini juga mengandung kofaktor.
 Enzim dan substrat yang telah diaktifkan membentuk kompleks berenergi tinggi yang tidak stabil dengan konfigurasi elektronik yang tegang antara substrat dan produk.
 Kompleks stadium transisi kemudian terurai menjadi produk dan melepaskan diri dari enzim.
 Enzim bebas kemudian mengikat set substrat lain dan mengulang proses tersebut

Mekanisme kerja enzim :
 Ikatan enzim enzim substrat yang demikian spesifik dapat dijelaskan melalui model.
– Model “Kunci-Anak Kunci” (Emil Fischer)
– Model Induced Fit (Koshland, Nemethy, Filmer)
 Model pengikatan ini terus berkembang sehingga dapat digunakan untuk menjelaskan tentang proses terjadinya inhibisi terhadap kerja enzim.


• Menurut teori kunci-gembok, terjadinya reaksi antara substrat dengan enzim karena adanya kesesuaian bentuk ruang antara substrat dengan situs aktif (active site) dari enzim, sehingga sisi aktif enzim cenderung kaku. Substrat berperan sebagai kunci masuk ke dalam situs aktif, yang berperan sebagai gembok, sehingga terjadi kompleks enzim-substrat. Pada saat ikatan kompleks enzim-substrat terputus, produk hasil reaksi akan dilepas dan enzim akan kembali pada konfigurasi semula. Berbeda dengan teori kunci gembok.
• Menurut teori kecocokan induksi reaksi antara enzim dengan substrat berlangsung karena adanya induksi substrat terhadap situs aktif enzim sedemikian rupa sehingga keduanya merupakan struktur yang komplemen atau saling melengkapi. Menurut teori ini situs aktif tidak bersifat kaku, tetapi lebih fleksibel.

2.4 KOMPLEKS ENZIM SUBSTRAT
Perbandingan jumlah antara enzim dan substrat harus sesuai, supaya reaksi berjalan optimum. Semakin banyak enzim, reaksi akan semakin cepat. Peningkatan konsentransi substrat dapat meningkatkan kecepatan reaksi bila jumlah enzim tetap. Namun pada saat sisi aktif semua enzim berikatan dengan substrat, penambahan substrat tidak dapat meningkatkan kecepatan reaksi enzim selanjutnya. Dengan konsentrasi enzim yang tetap, perubahan substrat akan menambah kecepatan reaksi.



2.5 KOFAKTOR DAN KOENZIM
2.5.1 Kofaktor
Banyak enzim dalam melaksanakan fungsi katalitiknya membutuhkan senyawa lain yang bukan protein. Senyawa lain tersebut disebut kofaktor. Kofaktor tersebut harus terikat terlebihdulu dengan enzim sebelum melaksanakan fungsi katalitiknya. Kofaktor dapat berupa senyawa inorganik atupun organik. Kofaktor yang berupa senyawa inorganik, yaitu logam disebut kofaktor logam, sedangkan kofaktor yang berupa senyawa organik nonprotein disebut koenzim.
Beberapa enzim tidak memerlukan komponen tambahan untuk mencapai aktivitas penuhnya. Namun beberapa memerlukan pula molekul non-protein yang disebut kofaktor untuk berikatan dengan enzim dan menjadi aktif.[38] Kofaktor dapat berupa zat anorganik (contohnya ion logam) ataupun zat organik (contohnya flavin dan heme). Kofaktor dapat berupa gugus prostetik yang mengikat dengan kuat, ataupun koenzim, yang akan melepaskan diri dari tapak aktif enzim semasa reaksi.
Enzim yang memerlukan kofaktor namun tidak terdapat kofaktor yang terikat dengannya disebut sebagai apoenzim ataupun apoprotein. Apoenzim beserta dengan kofaktornya disebut holoenzim (bentuk aktif). Kebanyakan kofaktor tidak terikat secara kovalen dengan enzim, tetapi terikat dengan kuat. Namun, gugus prostetik organik dapat pula terikat secara kovalen (contohnya tiamina pirofosfat pada enzim piruvat dehidrogenase). Istilah holoenzim juga dapat digunakan untuk merujuk pada enzim yang mengandung subunit protein berganda, seperti DNA polimerase. Pada kasus ini, holoenzim adalah kompleks lengkap yang mengandung seluruh subunit yang diperlukan agar menjadi aktif.
Contoh enzim yang mengandung kofaktor adalah karbonat anhidrase, dengan kofaktor seng terikat sebagai bagian dari tapak aktifnya.

2.5.2 Koenzim

Model pengisian ruang koenzim NADH
Koenzim adalah kofaktor berupa molekul organik kecil yang mentranspor gugus kimia atau elektron dari satu enzim ke enzim lainnya. Contoh koenzim mencakup NADH, NADPH dan adenosina trifosfat. Gugus kimiawi yang dibawa mencakup ion hidrida (H–) yang dibawa oleh NAD atau NADP+, gugus asetil yang dibawa oleh koenzim A, formil, metenil, ataupun gugus metil yang dibawa oleh asam folat, dan gugus metil yang dibawa oleh S-adenosilmetionina. Beberapa koenzim seperti riboflavin, tiamina, dan asam folat adalah vitamin.
Oleh karena koenzim secara kimiawi berubah oleh aksi enzim, adalah dapat dikatakan koenzim merupakan substrat yang khusus, ataupun substrat sekunder. Sebagai contoh, sekitar 700 enzim diketahui menggunakan koenzim NADH.
Regenerasi serta pemeliharaan konsentrasi koenzim terjadi dalam sel. Contohnya, NADPH diregenerasi melalui lintasan pentosa fosfat, dan S-adenosilmetionina melalui metionina adenosiltransferase.

2.6 PROENZIM/APOENZIM
Proenzim atau zimogen merupakan enzim yang diproduksi dalam bentuk inaktif. Ada dua tujuan utama pembentukan proenzim ini, yaitu: (1) Melindungi tubuh dari proses autodigesti; (2) Melayani kebutuhan enzim tertentu dengan cepat. Sebagai contoh misalnya pepsinogen, tripsiogen dan kemotripsinogen.
Biasanya dalam bentuk yang masih berupa proenzim atau zimogen ini, enzim tersebut diberi nama seperti nama trivialnya dan ditambah dengan awalan pro- atau akhiran –ogen. Contoh yang paling dikenal adalah enzim pencerna protein yang dikeluarkan oleh pancreas, yaitu tripsin, kimotripsin, dan elastase. Enzim-enzim ini diaktifkan di tempat dia harus bekerja dan oleh keadaan tertentu. Pepsin misalnya, disekskresikan oleh sel-sel utama (chief cell) epitel mukosa lambung, dalam bentuk yang belum aktif dan dinamai sebagai pepsinogen.

2.7 ISOSIM
Isozim atau Iso-enzim adalah dalam suatu campuran terdapat lebih dari satu enzim yang dapat berperan dalam suatu substrat untuk memberikan suatu hasil yang sama.
Keuntungan bagi tumbuhan yang mengandung isoenzim adalah karena isozim – isozim tersebut akan memiliki tanggapan yang berbeda terhadap faltor – faktor lingkungan. Setiap isozim dihadapkan pada lingkungan kimia yang berbeda dab masing – masing berperan pada posisi yang berbeda dalam lintasan metabolic.
Isozim merupakan sekolompok enzim yang mempunyai aktivitas yang sama. Bentuk-bentuk enzim tersebut berbeda secara fisik, kimia dan imunologik dan dapat dipisahkan. Isozim lazim ditemukan di dalam serum dan jaringan semua vertebrata, insekta, tumbuhan, dan organisme uniseluler. Jaringan yang berbeda dapat mengandung isozim yang berbeda pula, dan semua isozim ini mempunyai afinitas berbeda-beda terhadap substrat.

2.8 KINETIKA ENZIM

Mekanisme reaksi enzimatik untuk sebuah subtrat tunggal. Enzim (E) mengikat substrat (S) dan menghasilkan produk (P). Kinetika enzim menginvestigasi bagaimana enzim mengikat substrat dengan mengubahnya menjadi produk. Data laju yang digunakan dalam analisa kinetika didapatkan dari asal enzim.
Pada tahun 1902, Victor Henri mengajukan suatu teori kinetika enzim yang kuantitatif, namun data eksperimennya tidak berguna karena perhatian pada konsentrasi ion hidrogen pada saat itu masih belum dititikberatkan. Setelah Peter Lauritz Sørensen menentukan skala pH logaritmik dan memperkenalkan konsep penyanggaan (buffering) pada tahun 1909, kimiawan Jerman Leonor Michaelis dan murid bimbingan pascadokotoralnya yang berasal dari Kanada, Maud Leonora Menten, mengulangi eksperimen Henri dan mengkonfirmasi persamaan Henri. Persamaan ini kemudian dikenal dengan nama Kinetika Henri-Michaelis-Menten (kadang-kadang juga hanya disebut kinetika Michaelis-Menten). Hasil kerja mereka kemudian dikembangkan lebih jauh oleh G. E. Briggs dan J. B. S. Haldane. Penurunan persamaan kinetika yang diturunkan mereka masih digunakan secara meluas sampai sekarang.
Salah satu kontribusi utama Henri pada kinetika enzim adalah memandang reaksi enzim sebagai dua tahapan. Pada tahap pertama, subtrat terikat ke enzim secara reversible, membentuk kompleks enzim-substrat. Kompleks ini kadang-kadang disebut sebagai kompleks Michaelis. Enzim kemudian mengatalisasi reaksi kimia dan melepaskan produk.

Kurva kejenuhan suatu reaksi enzim yang menunjukkan relasi antara konsentrasi substrat (S) dengan kelajuan (v).
Enzim dapat mengatalisasi reaksi dengan kelajuan mencapai jutaan reaksi per detik. Sebagai contoh, tanpa keberadaan enzim, reaksi yang dikatalisasi oleh enzim orotidina 5'-fosfat dekarboksilase akan memerlukan waktu 78 juta tahun untuk mengubah 50% substrat menjadi produk. Namun, apabila enzim tersebut ditambahkan, proses ini hanya memerlukan waktu 25 milidetik. Laju reaksi bergantung pada kondisi larutan dan konsentrasi substrat. Kondisi-kondisi yang menyebabkan denaturasi protein seperti temperatur tinggi, konsentrasi garam yang tinggi, dan nilai pH yang terlalu tinggi atau terlalu rendah akan menghilangkan aktivitas enzim. Sedangkan peningkatan konsentrasi substrat cenderung meningkatkan aktivitasnya. Untuk menentukan kelajuan maksimum suatu reaksi enzimatik, konsentrasi substrat ditingkatkan sampai laju pembentukan produk yang terpantau menjadi konstan. Hal ini ditunjukkan oleh kurva kejenuhan di samping. Kejenuhan terjadi karena seiring dengan meningkatnya konsentrasi substrat, semakin banyak enzim bebas yang diubah menjadi kompleks substrate-enzim ES. Pada kelajuan yang maksimum (Vmax), semua tapak aktif enzim akan berikatan dengan substrat, dan jumlah kompleks ES adalah sama dengan jumlah total enzim yang ada. Namun, Vmax hanyalah salah satu konstanta kinetika enzim. Jumlah substrat yang diperlukan untuk mencapai nilai kelajuan reaksi tertentu jugalah penting. Hal ini diekspresikan oleh konstanta Michaelis-Menten (Km), yang merupakan konsentrasi substrat yang diperlukan oleh suatu enzim untuk mencapai setengah kelajuan maksimumnya. Setiap enzim memiliki nilai Km yang berbeda-beda untuk suatu subtrat, dan ini dapat menunjukkan seberapa kuatnya pengikatan substrat ke enzim. Konstanta lainnya yang juga berguna adalah kcat, yang merupakan jumlah molekul substrat yang dapat ditangani oleh satu tapak aktif per detik.
Efisiensi suatu enzim diekspresikan oleh kcat/Km. Ia juga disebut sebagai konstanta kespesifikan dan memasukkan tetapan kelajuan semua langkah reaksi. Karena konstanta kespesifikan mencermikan kemampuan katalitik dan afinitas, ia dapat digunakan untuk membandingkan enzim yang satu dengan enzim yang lain, ataupun enzim yang sama dengan substrat yang berbeda. Konstanta kespesifikan maksimum teoritis disebut limit difusi dan nilainya sekitar 108 sampai 109 (M-1 s-1). Pada titik ini, setiap penumbukkan enzim dengan substratnya akan menyebabkan katalisis, dan laju pembentukan produk tidak dibatasi oleh laju reaksi, melainkan oleh laju difusi. Enzim dengan sifat demikian disebut secara katalitik sempurna ataupun secara kinetika sempurna. Contoh enzim yang memiliki sifat seperti ini adalah karbonat anhidrase, asetilkolinesterase, katalase, fumarase, β-laktamase, dan superoksida dismutase.
Kinetika Michaelis-Menten bergantung pada hukum aksi massa, yang diturunkan berdasarkan asumsi difusi bebas dan pertumbukan acak yang didorong secara termodinamik. Namun, banyak proses-proses biokimia dan selular yang menyimpang dari kondisi ideal ini, disebabkan oleh kesesakan makromolekuler (macromolecular crowding), perpisahan fase enzim/substrat/produk, dan pergerakan molekul secara satu atau dua dimensi. Pada situasi seperti ini, kinetika Michaelis-Menten fraktal dapat diterapkan.
Beberapa enzim beroperasi dengan kinetika yang lebih cepat daripada laju difusi. Hal ini tampaknya sangat tidak mungkin. Beberapa mekanisme telah diajukan untuk menjelaskan fenomena ini. Beberapa protein dipercayai mempercepat katalisis dengan menarik substratnya dan melakukan pra-orientasi substrat menggunakan medan listrik dipolar. Model lainnya menggunakan penjelasan penerowongan kuantum mekanika, walaupun penjelasan ini masih kontroversial. Penerowongan kuantum untuk proton telah terpantau pada triptamina.



2.9 INHIBITOR KOMPETITIF
Molekul penghambat yang bekerja dengan cara melekatkan diri pada bagian bukan sisi aktif enzim. Inhibitor ini menyebabkan sisi aktif berubah sehingga tidak dapat berikatan dengan substrat. Inhibitor nonkompetitif tidak dapat dipengaruhi oleh konsentrasi substrat.

Inhibitor kompetitif mengikat enzim secara reversibel, menghalangi pengikatan substrat. Di lain pihak, pengikatn substrat juga menghalangi pengikatan inhibitor. Substrat dan inhibitor berkompetisi satu sama lainnya.


Jenis-jenis inihibisi. Klasifikasi ini diperkenalkan oleh W.W. Cleland:

A. Inhibisi kompetitif
Pada inihibisi kompetitif, inhibitor dan substrat berkompetisi untuk berikatan dengan enzim. Seringkali inhibitor kompetitif memiliki struktur yang sangat mirip dengan substrat asli enzim. Sebagai contoh, metotreksat adalah inihibitor kompetitif untuk enzim dihidrofolat reduktase. Kemiripan antara struktur asam folat dengan obat ini ditunjukkan oleh gambar di samping bawah. Perhatikan bahwa pengikatan inhibitor tidaklah perlu terjadi pada tapak pengikatan substrat apabila pengikatan inihibitor mengubah konformasi enzim, sehingga menghalangi pengikatan substrat. Pada inhibisi kompetitif, kelajuan maksimal reaksi tidak berubah, namun memerlukan konsentrasi substrat yang lebih tinggi untuk mencapai kelajuan maksimal tersebut, sehingga meningkatkan Km.

B. Inhibisi tak kompetitif
Pada inhibisi tak kompetitif, inhibitor tidak dapat berikatan dengan enzim bebas, namun hanya dapat dengan komples ES. Kompleks EIS yang terbentuk kemudian menjadi tidak aktif. Jenis inhibisi ini sangat jarang, namun dapat terjadi pada enzim-enzim multimerik.

C. Inhibisi non-kompetitif
Inhibitor non-kompetitif dapat mengikat enzim pada saat yang sama substrat berikatan dengan enzim. Baik kompleks EI dan EIS tidak aktif. Karena inhibitor tidak dapat dilawan dengan peningkatan konsentrasi substrat, Vmax reaksi berubah. Namun, karena substrat masih dapat mengikat enzim, Km tetaplah sama.

D. Inhibisi campuran
Inhibisis jenis ini mirip dengan inhibisi non-kompetitif, kecuali kompleks EIS memiliki aktivitas enzimatik residual. Pada banyak organisme, inhibitor dapat merupakan bagian dari mekanisme umpan balik. Jika enzim memproduksi terlalu banyak produk, produk tersebut dapat berperan sebagai inhibitor bagi enzim tersebut. Hal ini akan menyebabkan produksi produk melambat atau berhenti. Bentuk umpan balik ini adalah umpan balik negatif. Enzim memiliki bentuk regulasi seperti ini sering kali multimerik dan mempunyai tapak ikat alosterik. Kurva substrat/kelajuan enzim ini tidak berbentuk hiperbola melainkan berbentuk S.
Kegunaan inhibitor:
Oleh karena inhibitor menghambat fungsi enzim, inhibitor sering digunakan sebagai obat. Contohnya adalah inhibitor yang digunakan sebagai obat aspirin. Aspirin menginhibisi enzim COX-1 dan COX-2 yang memproduksi pembawa pesan peradangan prostaglandin, sehingga ia dapat menekan peradangan dan rasa sakit. Namun, banyak pula inhibitor enzim lainnya yang beracun. Sebagai contohnya, sianida yang merupakan inhibitor enzim ireversibel, akan bergabung dengan tembaga dan besi pada tapak aktif enzim sitokrom c oksidase dan memblok pernafasan sel

2.10 ENZIM ALOSTERIK DAN SIFATNYA
Pada beberapa jenis jalur metabolisme, produk akhir dapat berikatan dengan enzim bukan pada sisi aktif enzim tetapi pada titik control lainnya. Jenis enzim demikian dinamakan enzim alosterik. Enzim alosterik sering berbentuk protein yang memiliki beberapa subunit protein dan memiliki satu atau lebih sisi aktif pada masing-masing subunitnya. Terikatnya substrat pada sisi aktif enzim akan menginduksi perubahan konformasi protein pada enzim tersebut yang memungkinkan sisi aktif lainnya memiliki afinitas untuk berikatan dengan molekul substrat. Enzim alosterik dikontrol oleh molekul efektor (activator dan inhibitor) yang berikatan pada enzim pada bagian tertentu dari enzim tersebut di luar sisi aktif enzim, dan selanjutnya dapat menyebabkan perubahan konformasi sisi aktif enzim yang dapat mempengaruhi kecepatan enzim
tersebut. Molekul activator alosterik dapat meningkatkan laju kerja enzim, sedangkan molekul inhibitor alosterik dapat menurunkan kerja enzim.
Pada beberapa sistem multienzim, enzim pertama atau enzim pengatur memiliki sifat yang menonjol. Enzim ini dihambat oleh produk akhir sistem multienzim. Bilangan produk akhir urutan metabolik tersebut meningkat di atas konsentrasi imbang-normalnya, yang menunjukkan bahwa senyawa ini sedang diproduksi dalam jumlah yang melebihi kebutuhan sel, produk akhir urutan ini bekerja sebagai suatu penghambat spesifik terhadap enzim pertama atau pengatur di dalam urutan ini. Keseluruhan sistem enzim, oleh karenanya, melambatkan kecepatan reaksi sehmgga produksi senyawa produk akhir tersebut menjadi seimbang dengan kebutuhan sel. Jenis pengaturan ini disebut penghambatan balik.

2.11 METABOLISME PROTEIN DAN ASAM AMINO
a. Jenis-jenis Protein dan Asam Amino
Protein (asal kata protos dari bahasa Yunani yang berarti "yang paling utama") adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Molekul protein mengandung karbon, hidrogen, oksigen, nitrogen dan kadang kala sulfur serta fosfor. Protein berperan penting dalam struktur dan fungsi semua sel makhluk hidup dan virus.
Ada dua jenis protein, dibedakan oleh hasil-hasil yang diperoleh, apabila protein dihirolisasi manjadi satuan monomer penyusun. Ini adalah protein sederhana dan protein berkonjugasi :
o Protein sederhana: hanya asam amino
o Protein berkonjugasi: asam amino + gugus (-gugus) prostetik nonprotein.
Penggolongan protein menurut kelarutannya :
 Protein berserat. Tidak larut dalam larutan garam dalam air
 Protein berbentuk bola. Larut dalam larutan garam dalam air.
Asam amino adalah sembarang senyawa organik yang memiliki gugus fungsional karboksil (-COOH) dan amina (biasanya -NH2). Dalam biokimia seringkali pengertiannya dipersempit: keduanya terikat pada satu atom karbon (C) yang sama (disebut atom C "alfa" atau α). Gugus karboksil memberikan sifat asam dan gugus amina memberikan sifat basa. Dalam bentuk larutan asam, amino bersifat amfoterik: cenderung menjadi asam pada larutan basa dan menjadi basa pada larutan asam. Perilaku ini terjadi karena asam amino mampu menjadi zwitter-ion. Asam amino termasuk golongan senyawa yang paling banyak dipelajari karena salah satu fungsinya sangat penting dalam organisme, yaitu sebagai penyusun protein.
Asam amino terdiri dari dua kelompok, yakni sebagai berikut :
 Asam Amino Esensial
Asam amino esensial adalah asam amino yang tidak dapat dibuat oleh tubuh. Asam amino jenis ini harus didatangkan dari makanan kita sehari-hari. Asam amino esensial terdiri atas Valine, Lysine, Threonine, Leucine, Tryptophan, Phenylalanine, dan Methionine.


 Asam Amino Non-Esensial
Asam amino non esensial adalah asam amino yang dapat dibuat sendiri oleh tubuh. Asam amino non esensial terdiri atas Glycine, Tyrosine, Cystine, Alanine, Serine, Asam Glutamat, Asam Aspartat, Arginin, Histidin, Proline Hydroxyproline, dan Citruline.

b. Pencernaan dan Absorbsi Protein
Protein merupakan suatu bahan yang penting dalam tubuh karena fungsinya yang beragam, terutama sebagai struktural tubuh, katalitik, dan sinyal dalam jaras tubuh. Sumber C dan N dari protein dapat digunakan untuk sintesis protein dan asam amino baru serta rangka karbonnya sebagai senyawa antara dalam metabolisme karbohidrat dan lipid. Gugus NH2 dari asam amino akan masuk ke dalam sintesis urea (ureotelik). Enzim yang digunakan untuk memecah protein (protease/peptidase) disintesis dan disekresi dalam bentuk inaktif yang disebut proenzim atau zimogen.
 Lambung
Getah lambung merupakan cairan jernih berwarna kuning pucat yang mengandung HCl 0,2-0,5% dengan pH sekitar 1,0. Getah lambung terdiri atas sekitar 97-99% air. Sisanya terdiri atas musin (lendir) serta garam anorganik, enzim pencernaan (pepsin serta renin), dan lipase. Getah lambung berfungsi untuk membunuh mikroorganisme, denaturasi protein makanan, dan memberi lingkungan pH yang sesuai untuk pepsin bekerja (pH optimal 1,0-2,0).
pepsin dan renin.
 Duodenum
Kimus akan cepat dinetralisir oleh getah pankreas karena mengandung bikarbonat (HCO3-). Dalam getah pankreas terdapat beberapa enzim (khusus untuk protein) yang dilepaskan sebagai zimogen. Kerja pankreolitik yang dimiliki getah pankreas disebabkan oleh tiga buah enzim endopeptidase: tripsin, kimotripsin, dan elastase yang menyerang protein serta polipeptida yang dilepas dari lambung untuk membentuk senyawa-senyawa polipeptida, peptida, atau keduanya.
 Usus halus (getah usus)
Getah usus memiliki aminopeptidase yang merupakan eksopeptidase yang menyerang ikatan peptida di dekat terminal amino asam amino polipeptida serta oligopeptida dan dipeptidase dengan beragam spesifisitas, yang sebagian diantaranya berada di sel epitel usus. Dipeptidase membentuk dipeptida menjadi asam amino bebas.

c. Biosintesa Asam Amino
Kira-kira 75% asam amino digunakan untuk sintesis protein. Asam-asam amino dapat diperoleh dari protein yang kita makan atau dari hasil degradasi protein di dalam tubuh kita. Degradasi ini merupakan proses kontinu. Karena protein di dalam tubuh secara terus menerus diganti (protein turnover).
Asam-asam amino juga menyediakan kebutuhan nitrogen untuk :
 Struktur basa nitrogen DNA dan RNA
 Heme dan struktur lain yang serupa seperti mioglobin, hemoglobin, sitokrom, enzim dll.
 Asetilkolin dan neurotransmitter lainnya
 Hormon dan fosfolipid
Selain menyediakan kebutuhan nitrogen, asam-asam amino dapat juga digunakan sebagai sumber energi jika nitrogen dilepas.

d. Keseimbangan Nitrogen
Daur nitrogen adalah bukti lain bahwa bumi secara khusus dirancang untuk kehidupan manusia. Nitrogen adalah salah satu unsur dasar yang terdapat dalam jaringan tubuh semua organisme hidup. Meskipun 78% dari atmosfer merupakan nitrogen, manusia dan hewan tidak dapat menyerapnya secara langsung. Di sinilah bakteri berfungsi dengan membantu kita memenuhi kebutuhan nitrogen.
Daur nitrogen dimulai dengan gas nitrogen (N2) yang ada diudara. Bakteri yang hidup di beberapa tanaman mengubah nitrogen menjadi amonia (NH3). Sebaliknya, jenis bakteri lain
mengubah amonia menjadi nitrat (NO3). (Halilintar juga memainkan peranan penting pada proses perubahan nitrogen di udara menjadi amonia).
Pada tingkat selanjutnya, makhluk hidup yang dapat membuat makanannya sendiri, seperti tumbuhan hijau, dapat menyerap nitrogen. Hewan dan manusia, yang tidak dapat membuat makanannya sendiri, dapat memenuhi kebutuhan nitrogen hanya dengan memakan tumbuh-tumbuhan tersebut.Nitrogen pada hewan dan manusia kembali ke alam melalui kotoran dan bangkai yang diuraikan oleh bakteri. Sementara menguraikan zat, bakteri tidak hanya melakukan tugas sebagai pembersih, tetapi juga melepaskan amonia, sumber utama nitrogen. Ada bakteri yang mengubah sejumlah tertentu ammonia menjadi nitrogen dan mencampurnya dengan udara. Ada juga bakteri yang mengubah sisanya menjadi nitrat. Tumbuhan menggunakan nitrat dan daur terus berlanjut. Tidak adanya bakteri dalam daur ini akan mengakibatkan berakhirnya kehidupan. Tanpa bakteri, tumbuhan tidak dapat memenuhi kebutuhan nitrogennya dan akan segera punah. Kehidupan tak mungkin terjadi di tempat yang tak memiliki tumbuhan.

DAFTAR PUSTAKA

Colby, 1992, Ringkasan Biokimia Harper, Alih Bahasa: Adji Dharma, Jakarta, EGC
Harjasasmita, 1996, Ikhtisar Biokimia dasar B, Jakarta, FKUI
Sadikin,Muhamad.2002.Biokimia Enzim.Jakarta : Widya Medika
Price A. Sylvia & Wilson M. Lorraine. 2006. Patofisiologi, Konsep Klinis Proses-Proses Penyakit volume 2. Jakarta: Penerbit Buku Kedokteran EGC.
http://www.scribd.com/doc/54311055/Enzim-komponen-PRINT.Diakses pada tanggal 12 Mei 2011.
http://www.wikipedia.com, diakses pada tanggal 12 Mei 2011.

0 komentar:

Poskan Komentar

Newer Posts Older Posts